CM-points and lattice counting on arithmetic compact Riemann surfaces
نویسندگان
چکیده
منابع مشابه
Counting Lattice Points in Polytopes via Riemann-Roch
This paper is a partial summary of the survey paper [1]. In particular, we are interested in telling the following story: given a lattice polytope, P , one would like to find an efficient way of counting the lattice points contained in P . One of the nicest ways to accomplish this is to use algebraic geometry in a clever and beautiful way. Namely, from P one can construct a toric variety, XP , ...
متن کاملNon-abelian vortices on compact Riemann surfaces
We consider the vortex equations for a U(n) gauge field A coupled to a Higgs field φ with values on the n × n matrices. It is known that when these equations are defined on a compact Riemann surface Σ, their moduli space of solutions is closely related to a moduli space of τ -stable holomorphic n-pairs on that surface. Using this fact and a local factorization result for the matrix φ, we show t...
متن کاملThe resultant on compact Riemann surfaces
We introduce a notion of resultant of two meromorphic functions on a compact Riemann surface and demonstrate its usefulness in several respects. For example, we exhibit several integral formulas for the resultant, relate it to potential theory and give explicit formulas for the algebraic dependence between two meromorphic functions on a compact Riemann surface. As a particular application, the ...
متن کاملIntroduction to Compact Riemann Surfaces
The theory of Riemann surfaces is a classical field of mathematics where geometry and analysis play equally important roles. The purpose of these notes is to present some basic facts of this theory to make this book more self contained. In particular we will deal with classical descriptions of Riemann surfaces, Abelian differentials, periods on Riemann surfaces, meromorphic functions, theta fun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 2020
ISSN: 0022-314X
DOI: 10.1016/j.jnt.2019.11.009