CM-points and lattice counting on arithmetic compact Riemann surfaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting Lattice Points in Polytopes via Riemann-Roch

This paper is a partial summary of the survey paper [1]. In particular, we are interested in telling the following story: given a lattice polytope, P , one would like to find an efficient way of counting the lattice points contained in P . One of the nicest ways to accomplish this is to use algebraic geometry in a clever and beautiful way. Namely, from P one can construct a toric variety, XP , ...

متن کامل

Non-abelian vortices on compact Riemann surfaces

We consider the vortex equations for a U(n) gauge field A coupled to a Higgs field φ with values on the n × n matrices. It is known that when these equations are defined on a compact Riemann surface Σ, their moduli space of solutions is closely related to a moduli space of τ -stable holomorphic n-pairs on that surface. Using this fact and a local factorization result for the matrix φ, we show t...

متن کامل

The resultant on compact Riemann surfaces

We introduce a notion of resultant of two meromorphic functions on a compact Riemann surface and demonstrate its usefulness in several respects. For example, we exhibit several integral formulas for the resultant, relate it to potential theory and give explicit formulas for the algebraic dependence between two meromorphic functions on a compact Riemann surface. As a particular application, the ...

متن کامل

Introduction to Compact Riemann Surfaces

The theory of Riemann surfaces is a classical field of mathematics where geometry and analysis play equally important roles. The purpose of these notes is to present some basic facts of this theory to make this book more self contained. In particular we will deal with classical descriptions of Riemann surfaces, Abelian differentials, periods on Riemann surfaces, meromorphic functions, theta fun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2020

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2019.11.009